The Exotics and Cosmic Ray Physics Program of NOvA

Matthew Strait

University of Minnesota

17 Sept 2020

Detector Overview — Astrophysics/BSM Perspective

- Segmented plastic and scintillator tracking calorimeters
- Near: 300 t, underground
 - Small, low-background, exposed to high-energy cosmic muons
- Far: 14 kt. on surface
 - Large, high-background, exposed to low- and high-energy cosmic flux
- Primarily hydrocarbons
 - Plus 16% chlorine (PVC)

Far Detector: Dark Matter/n\(\bar{n}\) Searches

DM search with upward-going muons

- Look for excess pointing back to Sun
- Perhaps sensitive to lower mass
 WIMPS than Super-K
- Dedicated trigger running since 2014

Neutron/anti-neutron oscillations

Simulated \bar{n} annihilation in ^{12}C

- Suppressed in nuclei, less in C than O
- If low-background, might match Super-K with fewer kt-years
- Trigger running since 2018
- Background levels not yet determined
- Limits \propto exposure? $\sqrt{\text{exposure}}$?

Cosmic Ray Seasonal Variations

- Well-known summer maximum in underground muon rate
- NOvA observes winter maximum in multi-muons

• ND: PRD 99 12, 122004

- Origin unknown
- 2015/2016 difference in ND unexplained

• FD: analysis in progress

- Run through 2025 gives 8 additional annual cycles
- More cycles: more likely to disentangle complex effects

Other Cosmic Ray Studies

- Measurement of low-energy east-west asymmetry
- Short-term weather effects
 - Known, but understudied
- Solar flare correlation?
 - Claimed by L3+C
- Measure muon rates above 100 TeV
 - Resolve Baksan/IceCube discrepancy?

Most looking for rare effects, sensitivity will continue to rapidly improve with exposure

E... GeV

Supernova

- Self-trigger, covering half the galaxy
- SNEWS alerts cover the rest.

At Galactic center:

7 tt Galactic Center.	
Far	Near
2163	46
393	9
137	3
139	3
199	4
	Far 2163 393 137 139

- Largest operating carbon-based detector
- Different targets constrain flavor content
- Search for SN-like neutrinos with gravitational waves: PRD 101, 11 112006
- Potential for supernova and exotic phenomena grow rapidly with exposure

Magnetic Monopole Search

- Far Detector: large surface area, minimal shielding
- Sensitive to light and/or slow monopoles that don't reach underground
- Separate search strategies for:
 - $\beta < 10^{-2}$: Select by timing. Analysis of 95-day exposure now on the arXiv: 2009.04867
 - $\beta > 10^{-2}$: Select by energy deposition. In progress.

- 1700 days of exposure already taken
- Background-free: limits scale linearly with exposure
- Expect to reach $4 \times 10^{-16} \, \mathrm{cm^{-2} s^{-1} sr^{-1}}$ for $3 \times 10^{-4} < \beta < 0.8$ by 2025

Summary

- NOvA has a rich program of BSM and cosmic-ray measurements
- Several improve proportional to exposure, making a long run beneficial:
 - Magnetic monopole search
 - Cosmic ray seasonal/short-term variation
 - · High energy muon rate
 - Supernova
 - Gravitational wave follow-ups
 - Perhaps: dark matter, nn oscillation